Pulsar Timing at Xinjiang Astronomical Observatory

WANG Na

- Main Results from Pulsar timing
- Prospect of Future

The Back Ground — the Site

- Construction start from 1991, complete at the end of 1993
- 76 km to the south Urumqi,
- On Tianshan Mountain, called Nanshan
- Altitude: 2080 m

2011-5-9, Beijing

Pulsar Physics and the Application of Pulsar Timing

The Back Ground — the Group

The Young Staffs:

- LIU Zhiyong
- YUAN Jianping
- GAO Mingfei

The Students:

- YAN Wenning
- GAO Zhifu
- WANG Jingbo
- ZHU Cui
- QIAN Maofei
- ZHAO Kuntao

The Back Ground — the Group

- The Ex-students:
- ZOU Weizhen
- YAN Zhen
- LA Dongsheng
- DONG Jiang
- ZHOU Renxi

The Back Ground — De-dispersion

	FB	PDFB
Center Frequency (MHz)	1540	muti-freq
Digitization (bit)	2	9
Total Bandwidth (MHz)	320	8, 16, 32, 64,128, 256, 512, 1024
Configuration	2x128x2.5	pulsar / spectrum

The Back Ground — De-dispersion

Pulsar Physics and the Application of Pulsar Timing

The Back Ground — What we experienced

Original

- Room temperature Rx

- 74 pulsars monitored
- Single pulsars
- Timing

Present

- PDFB
- ♦ 0.4 mJy
- ~300 pulsars monitoring
- ♦ MSPs
- Timing +Scint+Poln

Main Results from Pulsar Timing System

From a timing system, you can do:

- Glitches
- Timing noise
- Proper motion measurements
- Scintillation
- Power spectrum
- Single pulse
- Pulsar searching
- RRATS
- Polarization

Main Results — Detected Glitches

Observations from 2000 ~2009 <u>50 Glitches in 23 pulsars</u> • the first known glitch for 14 pulsars ■ Giant glitch in PSR B2334+61 Frequent glitching pulsars Various glitch recovery Slow glitches Tiny glitches

Main Results — Detected Glitches: giant glitch in PSR B2334+61

Main Results — Detected Glitches: giant glitch in PSR B2334+61

- Recovery: vortex creeping Alpar et al. (1993)
- Oscillation period ~ 364(5) days
- Tkachenko oscillation of superfluid vortex array (Ruderman 1970, Popov 2008), $P_{\rm T} \sim 1.77 R_6 P^{1/2} \text{ yr} \simeq 1.24 R_6 \simeq 1 \text{ yr}$

Main Results — Detected Glitches: Frequent glitching pulsars

- PSR B0531+21* (the Crab pulsar)
- PSR J0537—6910
- PSR B0833-45 (the Vela pulsar)
- PSR B1046—58
- PSR B1338—62
- PSR B1757—24
- PSR B1758—23
- PSR B1737—30*
- PSR B1800-21*
- (*: detected glitches at Ur)

Main Results — Detected Glitches Frequent glitching pulsars: the Crab Pulsar

- 2008 Apr: the largest frequency jump
- Decayed with a time constant 25 d
- Large permanent increase in slowdown rate
- No obvious change in pulse profile
 Wang et al, 2011, in preparing

Main Results — Detected Glitches: Frequent glitching pulsars: the Crab Pulsar

Precursor glitch	Post-glitch span	Braking index	
(yymmdd)	(yymmdd-yymmdd)		
041122	051111-060818	2.440(4)	
080423	090428-100901	2.572(2)	

 Xu & Qiao (2001): Varying particle wind strength, in addition to the magnetic dipole braking may account for a braking index less than 3.

Main Results — Detected Glitches: Frequent glitching pulsars: the Crab Pulsar

- A total sample of 18 interglitch intervals
- The mean interglitch interval 419 days
- Well described by Poisson distribution
- Essentially different from Vela pulsar

Pulsar Physics and the Application of Pulsar Timing

Main Results — Detected Glitches: Frequent glitching pulsars: the Crab Pulsar

- Activity parameter Ag is the net angular momentum loss due to glitching over some observing time span
- A long-term indicator of glitch effect
- No evident change of Ag, despite the more frequent glitching

Persistent Change in slowdown rate

Main Results — Detected Glitches: Frequent glitching pulsars: PSR B1737-30

 22glitches in 20 years of monitoring, with fractional jump in amplitude:

- Glitches in PSRs J0537–6910, B0833–45, B1046–58 and B1800–21 vary in a large ranges, including PSR 1737–30
- PSRs B0531+21, B1338-62, B1757-24 and B1758-23 more even in glitch amplitude

Zou et al. 2008, MNRAS, 384, 1063 Yuan, et al. 2010, MNRAS, 289-304

Main Results — Detected Glitches: Various glitch recovery

- Vela like permanent change in frequency derivative: PSRs B1800—21, B1823—13, B1046—58, B1610—50, B1706—44, B1727—33
- Others have no permanent change: PSRs B1338—62, J1617—5055, B1737— 30, J1708—4009, B1757—24, J2021+3651

2011-5-9, Beijing

Pulsar Physics and the Application of Pulsar Timing

Main Results — Detected Glitches: Slow glitches

Also see Shabanova, 2000

Main Results — Detected Glitches: Tiny glitches

PSRs B0144+59, B0402+61, B0525+21, J1705–3423, B1815–14, B1900+06, B1907+10 and B2224+65 (Yuan, et al. 2010, MNRAS, 289-304)

图 3.8: 两次典型的观测轮廓序列,其中分别包括了正常模式和反常模式,每个轮廓的积分时间为3分钟,右图为对应相对强度R。紫色的轮廓分别为正常模式和反常模式的叠加的累积轮廓,红色的圆圈表示过渡点。

Chen et al. 2011, ApJ, Submitted

- Time sequence of R for quasi-continuous observation from 2004 March 12-20 (left) and March 23-31 (right).
- The integration time for individual profiles is 1 minutes.

R for Separated Observation

R Distribution

Continuous data

Separated obs.

2011-5-9, Beijing

Pulsar Physics and the Application of Pulsar Timing

Main Results — Applications of Pulsar Timing

- Pulsar Navigation

Main Results — theoretical studies

Numerical simulation of the electron capture process in a magnetar interior Z. F. Gao, N. Wang, J. P. Yuan, L. Jiang and D. L. Song 2011, Astrophys Space Sci., 332, 129-138.

Evolution of superhigh magnetic fields of magnetars Z. F. Gao, N. Wang, J. P. Yuan, L. Jiang, D.L. Song and E. L. Qiao 2011, Astrophys Space Sci., 333, 427-435.

The effects of intense magnetic fields on Landau levels in a neutron star Z. F. Gao, N. Wang, D.L. Song J. P. Yuan and C.K. Chou 2011, Astrophys Space Sci. Accepted

Physics on huge X-ray luminosity of magnetars Q. H. Peng, Z. F. Gao, N. wang, H. Tong, and C. K. Chou, 11-th Symposium on Nuclei in the Cosmos 19-23 July 2010 Heidelberg. Germany, 2011, Proceedings of Science ID: PoS(NIC XI) 176

Prospect of Future – Large telescope

Structure: Reflectors + Roller raceway type elevationazimuth antenna pedestal

Main reflector

 \bigcirc

 \bigcirc

- Shaped Gregorian telescope
- Active surface
- Main reflector rms≤0.3mm
- Single panel: inner 65m ≤0.08mm, 65—110m≤0.1mm
 Sub-reflector:
 - 6 degrees of freedom
 - rms ≤0.05mm

Schange feed horn:

- Rotary table: change receiver <10 min
- Sub-reflector deflexion: change receiver <10 sec

Wide band digital receiver

- UHF (feed forward)
- L、S、X、K、V、W (L~W: feed back) challenge!!

Backend / data sampling

- Pulsar / spectrum (PDFB)
- Total power back end
- VLBI back end

Receiver system

Band	Freq Range (GHz)	Wave length (cm)	Receiver Temp(K)	System Temp.(K)	Efficiency (optimum position)	Poln
UHF	0.3 - 1	40	40	60	48%	linear
L	1 – 2	20	14	40	60%	linear
S	2 – 4	10	15	45	60%	linear
X	4 – 12	4	20	60	55%	linear
K	12 – 36	1	30	75	40%	linear
V	36 – 75	0.7	60	170	30%	linear
W	75 – 110	0.3	100	180	12%	linear

 Sensitivity of 110m will be 20 times higher than 25m
 China VLBI (CVN) sensitivity : CVN+110m: improve 1.8 times CVN+110m+65m: improve 3 times

CVN基线长度				
站点	北京50米	云南40米	上海25米	
乌鲁木齐25米	2460 km	2476 km	3249 km	
上海佘山25米	1114 km	1920 km	*	
云南昆明40米	2158 km	*	*	

Pulsar Physics and the Application of Pulsar Timing

Prospect of Future – Science

- Structure of galaxies and special radio sources
- Spectrum
- Pulsars
- High precision VLBI: Geodetic and astrometry
- Survey
- Spacecraft orbit measurement in VLBI mode
- Deep space autonomous navigation
- Pulsar time scale

Welcome for discussion

Qi<u>T</u>ai <u>T</u>adio <u>T</u>elescope

QTRT, QTT

- Basin 1.5km X 2 km
- Altitude of surrounding mountains: 1860-2250m,
- Altitude of bottom of the basin 1730-1830m

Elevation of mountains

Wind speed	ratio
≤4m/s (gentle breeze)	63.7%
≤6m/s (moderate breeze)	88.4%
≤8m/s (fresh breeze)	95.8%
≥17m/s (fresh gale)	0.079%

Temperature range

2011-5-9, Beijing

Pulsar Physics and the Application of Pulsar Timing

Prospect of Future – Progress

2010 March 29, Local government agreed 50m RMB support

关于申请"新疆 80 米射电望远镜建设" 项目经费支持的请示

尊敬的努尔·白克力主席:

中国科学院国家天文台经过充分论证提出在新疆建设一台 亚洲最大、世界第三的 80 米口径全可动射电望远镜。该望远镜 将成为自治区境内国际一流的基础科学研究平台和最具显示度 的大科学工程。

科技界一致认为,新疆具有特殊的地理位置和优良的无线电

Prospect of Future – Progress

- Prof Feng from Shanghai Jiao Tong University write to Xinjiang local leader
 2010Augest 1, Present replied: Starting at a higher point
 110m+active surface
- 2011 April 25: passed experts' evaluation
- Xinjiang and CAS agreed pushing this project together,

seeking for support

14

18

Prospect of Future – Progress

- Land acquisition
- Site planning
- Water, power supply, road, telecommunication
- Receiver scheme
- Telescope control
- RFI protect zone

